BBA Report

BBA 41255

A Ca²⁺-STIMULATED INCORPORATION OF PHOSPHATE INTO ATP IN CHLOROPLASTS; THE PROBLEM OF ALLOTOPY

TILLY BAKKER-GRUNWALD

 $Laboratory\ of\ Biochemistry,\ B.C.P.\ Jansen\ Institute,\ University\ of\ Amsterdam,\ Plantage\ Muidergracht\ 12,\ Amsterdam\ (The\ Netherlands)$

(Received February 11th, 1974)

Summary

Under continuous illumination, a Ca^{2+} -induced incorporation of phosphate into ATP is found in chloroplasts, with properties similar to the Mg^{2+} -catalyzed ATP— P_i exchange. Thus, the chloroplast coupling factor has no allotopic properties towards divalent cations.

Until recently, the behaviour of chloroplast coupling factor 1 (CF₁) towards divalent cations was classified as 'allotopic' [1]: the activities of the membrane-bound form, like photophosphorylation and light-induced ATPase, were Mg^{2+} -dependent [2,3], whereas the ATPase of purified CF₁ was dependent on the presence of $Ca^{2+}[4]$. Two years ago Nelson et al. [5] showed that isolated CF₁, under appropriate conditions, could also exhibit Mg^{2+} -catalyzed ATPase.

Considerations of symmetry would require the existence of membrane-bound Ca²⁺-dependent activities as well. It occurred to us that the reason why these had not been observed might be the unique energetic feedback features of the system: chloroplast ATPase characteristically requires a high-energy conformation, and during Mg²⁺-ATPase, this conformation under suitable conditions can be maintained by the ATPase reaction itself [6–8]. In other words, Mg²⁺ fulfills at least a dual function here: as a cofactor in the turnover of the ATPase enzyme, and in coupling it to the formation of the high-energy state required for maintaining that turnover. It might very well be that Ca²⁺ could substitute for Mg²⁺ in the first function, like it does with

TABLE I COMPARISON OF Mg^{2+} AND Ca^{2+} -STIMULATED PHOSPHATE INCORPORATION IN CHLOROPLASTS

Spinach chloroplasts were prepared as in ref. 7, but in a medium containing 100 mM KCl, 0.5 mM Na-EDTA and 5 mM Na-tricine (pH 8.2). The reaction mixture contained, in addition, 10 μ M pyocyanin, 3 mM P_i containing about 10⁶ cpm of ³² P_i , and 10 mM DTE and 5 mM MgCl₂ or CaCl₂ as indicated. Chlorophyll concentration was 50 μ g/ml, temp. 25°C, pH 8.0. After a 5 min preillumination period (Stage A) the incorporation reaction was started by addition of ATP to a final concentration of 5 mM. After again 5 min in the light or the dark (Stage B) the reaction was terminated by addition of trichloroacetic acid (final concentration 4%), and ³² P_i incorporation into the organic fraction determined essentially as in ref. 12. In Expt 1, less than 5% of the ATP was broken down by dark Mg²⁺—ATPase during the course of the exchange. Figures given in μ moles P_i incorporated per h per mg chlorophyll.

Stage		Divalent cation present		
A	В	Mg ²⁺	Ca ²⁺	None
Experimen	t 1			
+ DTE	dark	6.2	0	0
+ DTE	light	10.3	5.9	0.8
Experimen	t 2			
- DTE	light	10.4	1.0	
+ DTE	light	18.8	7.3	_
+ DTE	light + DCCD 10 µM	15.1	5.7	_
+ DTE	light + DCCD 50 µM	5.7	0.8	-

the purified enzyme, but not in the latter. In that case, it should be possible to observe a Ca²⁺-stimulated turnover of the bound ATPase enzyme under conditions of an externally applied high-energy state.

In Table I it is shown that, indeed, under continuous illumination a Ca²⁺-stimulated phosphate incorporation into ATP can be induced in chloroplasts, with 40-60% of the activity of the Mg²⁺-stimulated ATP-P_i exchange. Like the latter, it is greatly enhanced by preillumination in the presence of the di-sulphydryl compound dithioerythritol [1,9,10] and inhibited by dicyclohexyl carbodiimide (DCCD) (Expt 2); but whereas the Mg²⁺-stimulated exchange after induction continues in the dark by virtue of simultaneous ATPase activity [10], the Ca²⁺-stimulated reaction is strictly dependent upon continuous external energy supply in the form of light (Expt 1). As yet, it is not clear whether this Ca²⁺-stimulated phosphate incorporation represents a true ATP-P; exchange or an ATPase reaction followed by ATP-synthesis. In view of the absolute requirement for Mg²⁺ in photophosphorylation, the latter possibility seems less probable, unless some firmly-bound Mg²⁺ would suffice here. Besides, we were not able to show any significant Ca²⁺-ATPase activity in chloroplasts by varying the energy state of the chloroplasts over a wide range by background illumination and/or addition of uncoupler. The light-dependent Ca2+-ATPase found by Bennun and Avron [11] might however be relevant in this respect.

The important point is that under the proper energetic conditions also membrane-bound CF₁ exhibits Ca^{2*}-stimulated activity. The problem of the 'allotopy' of CF₁ towards different cations thereby is changed into a problem of the effect of divalent cations on energy conservation.

Acknowledgements

I thank Dr Karel van Dam for helpful discussions. This work was in part supported by the Netherlands Foundation for Chemical Research (S.O.N.) with financial aid from the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

References

- 1 McCarty, R.E. and Racker, E. (1968) J. Biol. Chem. 243, 129-137
- 2 Jagendorf, A.T. and Avron, M. (1959) Arch. Biochem. Biophys. 80, 246-257
- 3 Petrack, B. and Lipmann, F. (1961) in Light and Life (McElroy, W.D. and Glass, H.B., eds), pp. 621-630, The Johns Hopkins Press, Baltimore
- 4 Vambutas, V.K. and Racker, E. (1965) J. Biol. Chem. 240, 2660-2667
- 5 Nelson, N., Nelson, H. and Racker, E. (1972) J. Biol. Chem. 247, 6506-6510
- 6 Petrack, B., Craston, A., Sheppy, F. and Farron, F. (1965) J. Biol. Chem. 240, 906-914
- 7 Bakker-Grunwald, T. and Van Dam, K. (1973) Biochim. Biophys. Acta 292, 808-814
- 8 Bakker-Grunwald, T. and Van Dam, K. (1974) Biochim. Biophys. Acta, submitted
- 9 Carmeli, C. and Avron, M. (1967) Eur. J. Biochem. 2, 318-326
- 10 Rienits, K.G. (1967) Biochim. Biophys. Acta 143, 595-605
- 11 Bennun, A. and Avron, M. (1964) Biochim. Biophys. Acta 79, 646-648
- 12 Nielsen, S.O. and Lehninger, A.L. (1955) J. Biol. Chem. 215, 555-570